
 

 68

  
Abstract—Soft computing methods are well 

known for their applications in the petroleum 
industry. Injection profile is one of the most 
important factors that need be taken into 
consideration in major oilfield development or 
related decision making. Injection profile is 
affected by multiple geological and developmental 
factors, which form complicated nonlinear 
relationships that are difficult to model by using 
conventional approaches. In this paper, an 
intelligent system is presented to construct fuzzy 
inference systems (FIS) automatically by 
integrating the fuzzy subtractive clustering and the 
Adaptive-Network-based Fuzzy Inference System 
(ANFIS). The method was tested by injection 
profile prediction in the Daqing Oilfield in China. A 
data cleaning strategy, the TANE algorithm, was 
applied to identify and to remove inconsistency in 
the raw data set collected from the oilfields. 
Results demonstrated that cleaned data produced 
more robust FIS and achieved higher prediction 
accuracies. The same approach can be applied in 
intelligent systems in resolving complicated 
Internet problems.  
 

Index Terms—soft computing, ANFIS, fuzzy 
subtractive clustering, approximate dependency 
mining, conflicting data patterns  
 

1. INTRODUCTION 
Soft computing techniques have been applied 

in many areas of the petroleum industry, such as 
reservoir characterization [1,2,3], well log 
interpretation [4,5,6], production prediction [7] 
and treatment optimization [8]. 

Injection profile of injection wells in water 
flooding oilfields is one of the most important 
factors in oilfield development. In water-flooding 
oilfields, injected water drives petroleum fluid (oil, 
gas and water) to move towards the wellbore by 
pushing the oil/gas/water in the porous media 
underground. Understanding injection profiles 
significantly aids in analyzing key petroleum 
production problems, such as residual oil 
distribution, residual reserve estimation, water 
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flooding efficiency, water injection balancing and 
so on.  

Many methods can be applied to obtain 
injection profiles in oilfields [9, 10], such as 
sealed coring, sidewall coring, logging data 
interpretation, C/O spectral logging, numerical 
simulation and comprehensive analysis of static 
and dynamic data from the oilfield development. 
Most of those methods, except for numeric 
simulation, are for obtaining injection profiles by 
in place measurement and interpretation. They 
are expensive and time-consuming. In addition, it 
is impossible to obtain injection profiles whenever 
and wherever they are needed for improving oil 
recovery (IOR) purposes. Reservoir numeric 
simulation models the oil/gas production by 
combining petroleum fluid flow and other models. 
By properly modeling reservoir and matching the 
history production data, reservoir simulation 
produces injection profiles in the production 
history and predicts injection profiles in the given 
future. However, reservoir simulation has its own 
inherent problems, including that: 1) modeling 
multiple parameters and the integration of sub-
models are difficult; 2) history matching is 
actually a trial-and-error and time-consuming 
process which depends on reservoir simulation 
expertise intensively; and 3) reservoir simulation 
sometimes encounters difficulties in modeling 
actual reservoir features due to built-in limitations 
in models. In addition, time-consuming post-
processing is required to obtain injection profile 
data from reservoir simulation results. 
Considering that injection profiles are required in 
many different IOR projects, it would be nice to 
have handy data available when it is required.  

Injection profile prediction using soft computing 
methods was reported in [11]. The paper 
integrated the subtractive clustering and the 
ANFIS methods to construct optimized FIS 
automatically using available data from the 
Daqing Oilfield. In this paper, we briefly introduce 
the profile injection problem in water flooding 
oilfields and describe the problem modeling 
considerations in more detail. In order to enhance 
the performance of soft computing methods, the 
TANE algorithm was applied to identify implicitly 
conflict data patterns in the raw data. The similar 
problem modeling procedure and same data 
were used. Compared with results presented in 
[11], improved injection profile prediction 
accuracy was achieved. It shows the importance 
of data quality in problem modeling using soft 
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computing methods, especially when the 
available training data set is small. The same 
method can be applied in other complicated 
problems in the petroleum industry, such as 
production predict and reserve evaluation.  

The rest of this paper is organized as follows. 
Section 2 presents considerations in soft 
computing method selection and the problem of 
injection profile prediction; Section 3 presents the 
methodology used in injection profile modeling 
and prediction; Section 4 summarizes the 
experimental results and Section 5 concludes the 
paper. 

2. PROBLEM STATEMENT 
In water flooding oilfields, the distribution of 

injected water along the producing strata, the 
injection profile, is tightly related to oil/gas 
production from producing wells. Water injectivity 
in active producing strata is affected by many 
parameters, such as permeability of formations, 
the communication of injection and producing 
wells, injection pressure differences, well 
patterns, and so on. Because the fluid flow in the 
porous media in reservoir follows the non-linear 
Darcy’s Law and these factors interact 
complicatedly, it is difficult to model their 
relationships with the injection profile data by 
conventional approaches. To improve the 
injection profile prediction efficiency and 
accuracy, soft computing methods are applied.  

2.1 Parameter Selection 
In problem modeling using soft computing 

methods, problem formulation and decomposition 
are equally important. Parameter selection 
determines how the problem is modeled and 
resolved. In the influential parameter selection, 
following points should be considered:  
• Selected parameters affect the target 

problem and the target parameter. Strong 
relationships, linear or non-linear, must exist 
among selected parameters and target 
variables; 

• Selected parameters must be well-populated 
and corresponding data must be as clean as 
possible. Since the soft computing methods 
model problems based on available data, the 
data availability and quality are essential for 
successful modeling. 

In order to model and predict injection profiles, 
above mentioned factors, formation permeability, 
communication of injection and producing wells, 
well patterns and production setups, should be 
considered. In order to filter proper influential 
parameters, injection profile data from 25 wells, 
totally 218 active strata, was analyzed. Following 
parameters were selected: 
• Gross sand thickness near the wellbore of 

injection wells, denoted as hgross1; 
• Net sand thickness near the wellbore of 

injection wells, denoted as hnet1; 

• Gross sand thickness near the wellbore of 
nearby producing wells, denoted as hgross2; 

• Net sand thickness near the wellbore of 
nearby producing wells, denoted as hnet2; 

• Spacing distance between injection wells and 
surrounding producing wells, denoted as d.  

The first four parameters reflect the 
communication between injection and producing 
wells. Well spacing distance reflects the effect of 
well pattern and production criteria, the larger the 
well spacing, the smaller the injection capability.  

Formation permeability of active strata is 
another key factor that affects the water injectivity 
and the injection profiles. Injected water moves 
faster in the direction of higher permeability, and 
breaks through in producing wells in high-
permeability zones. Studies on available data 
show that absolute permeability of active strata is 
positively related to the sand type in the Daqing 
Oilfield. Sand types are embodied by the 
thickness of sand and communication of injection 
and producing wells, as shown in Table 1. In 
addition, permeability is not widely available in 
our tested area. Therefore, permeability is not 
considered in problem modeling. 

 
Thickness of 

sand-body (m) 

<0.5 

gross 

≥0.5 

gross 

0.2-0.5 

net 

0.5-1.0 

net 

1.0-1.5 

net 

1.0-1.5 

net 

Average 

permeability 

(um2) 

0.037 0.123 0.264 0.802 1.064 2.181 

Table 1: Relationship of permeability and sand thickness in 
the active producing strata 

 

2.2 Problem Formulation 
The relationship of injection profile and 

selected parameters is not obvious. Injection 
profile is calculated by summing up relative water 
intakes of producing wells perforated in each 
active stratum, formulated as follows:  

 
∑×=

i
iii ratioratioRIri /   (1) 

 
3.3/)( 222 iii netgrossneti hhhratio −+=       (2) 

where i=1,2,…, refers to one of surrounding 
producing wells of injection wells. Hence in the 
problem modeling, the input is hgross1, hnet1, hgross2, 
hnet2, d, and the output is rii. The resulting FIS 
models the relationships of input and output data.  

The injection of an active stratum is calculated 
as follows:  

 

∑=
i

kik riRI                                (3) 

where k is the index of a producing stratum of an 
injection well, and i is the index of surrounding 
producing wells of the injection well in the 
producing stratum. 

Predicted injection rates are compared with 
corresponding measured rates. If two rates have 
small difference, as in 
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thresholdRIRI measured
k

predicted
k ≤− || , where threshold is 

defined based on requirement in the petroleum 
industry, it is correctly predicted. Prediction 
accuracy is evaluated by percentage of correctly 
predicted injection rate using following formula: 
 

100
||#

×
≤−

=
setpredicted

thresholdRIRIof
accuracy

measuredpredicted   (4) 

 
In injection profile prediction, a bias of 2% to 

injection rate meets the precision requirements. 
Therefore, 2% is taken as a threshold to calculate 
the prediction accuracy. 

3. THE METHODOLOGY  

3.1 Soft Computing Method Selection  
Fuzzy logic (FL) was introduced by Zadeh in 

1965 [12], which processes data using partial set 
membership rather than crisp set membership. 
Similar to neural networks, FL is able to generate 
definite conclusions based on vague, ambiguous, 
imprecise and missing input information. One 
essential task in constructing proper FIS is to 
provide correct fuzzy membership functions and 
fuzzy rules. It is a time-consuming task, and 
requires profound expertise for a given problem. 
In addition, it is oftentimes difficult to convert 
domain knowledge into if-then fuzzy rules, even 
for domain experts.  

Some methods [13,14] have been proposed to 
learn fuzzy membership functions and fuzzy rules 
and further FIS automatically by analyzing 
available input-output data. ANFIS [15] is a 
sophisticated neuro-fuzzy system and is able to 
model complicated fuzzy relationships. It learns 
the Sugeno-Takagi (or ST) FIS [16] using forward 
and backward passes, as shown in Fig. 1. The 
ST FIS is formatted as equations (5) and (6). 
ANFIS is an efficient approach to construct FIS 
for a given problem using available data for 
training.   
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Fig. 1. The equivalent ANFIS architecture of the first order ST 

fuzzy inference system in equations (5) and (6). 
 
To aid the construction of ANFIS, a clustering 

approach, the fuzzy subtractive clustering [17], is 
employed to cluster available data into fuzzy 

clusters. After fuzzy clusters are generated, an 
FIS can be generated based on the clustering 
results. Fuzzy subtractive clustering works better 
than other clustering methods for FIS. The 
resulting FIS can be refined further by the ANFIS.  

In using the fuzzy subtractive clustering 
method to a given problem, main parameters that 
are required to adjust are the influential radii of a 
cluster center in the multiple dimensional data 
space. The method assumes that all data falls 
within a unit hyper-box. Smaller influential radii 
generate more clusters for further process, and 
larger radii generate fewer clusters. Different 
radius combinations generate different FIS. 
Hence it is important to select proper influential 
radii for a given problem.  

In our method, the fuzzy subtractive clustering 
and ANFIS are integrated to model complicated 
real-world problems. This combination has been 
applied in automation control [18]. In order to 
save the trial-and-error radius adjustment, an 
automatic optimization process was employed to 
obtain the best combination of influential radius in 
our approach. Given injection profile prediction 
problem, a range of influential radius of 0.3~0.7 
was used based on the precision requirement. 
Optimized radius combination was selected 
according to the root mean square errors (RMSE) 
from the training and validating data sets.  

3.2 Conflict Data Pattern Identification 
To identify conflict data patterns in the raw 

data, the TANE algorithm [19] was applied. The 
TANE algorithm analyzes the functional or 
approximate dependencies of different attributes 
in given data source. The results tell whether the 
key (e.g. primary key or compound key) is 
properly selected or data patterns are properly 
associated. Interesting results were observed, as 
reported in Section 4. 

The TANE algorithm requires partition of 
continuous values for interesting domains. Data 
should be pre-processed before being put into 
the TANE algorithm. Based on the precision 
requirement for the injection profile prediction, the 
gross thickness and net thickness of strata near 
the wellbore of injection and producing wells are 
kept in its original representation. Well spacing is 
processed into discrete numbers using following 
rules: 
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The relative injection was kept in precision of 

1%, which meets the precision requirement in the 
petroleum industry. 

After all these processing, the TANE algorithm 
was run in APPROXIMATE mode. By running the 
TANE algorithm, four approximate dependencies 
are discovered using given error threshold. To 
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identify exceptional tuples, it is required to 
investigate the equivalence partitions of both left-
hand and right-hand sides of approximate 
dependency. Results are shown in Section 4.  

3.3 Injection Profile Modeling & Prediction 
In modeling the injection profile problem, the 

fuzzy subtractive clustering and the ANFIS were 
integrated, and a parameter optimization strategy 
was applied to achieve best performance FIS for 
training and validating data. Problem modeling 
follows steps in Fig. 2.  

Main data set used in this paper is from the 
South V District and the South II District in the 
Daqing Oilfield. It covers 10 injection wells, 53 
active producing strata, and 45 producing wells. 
In problem modeling, totally 363 data points were 
sampled from the raw data. After data cleaning, 
356 data points were left for analysis. In problem 
modeling, sampled data points were separated 
based on injection wells. Data from nine injection 
wells were used to construct the FIS; the left data 
were used to validate the resulting FIS. Average 
validation accuracy is calculated based on 
different training and validating data sets. In 
injection profile prediction, un-involved profile 
data from the same development district was 
used to calculate the prediction accuracy. 

 

 
Fig.2. Flowchart of injection profile modeling using the 

fuzzy subtractive clustering and ANFIS methods.  

4. EXPERIMENTAL RESULTS 

4.1 Sample Data Set 
Fig. 3 shows the complicated relationships of 

five selected parameters with relative injection.  
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Fig.3. Relationships of selected parameters to relative 
injection of producing oil strata, where gross1 stands for 

hgross1, net1 for hnet1, gross2 for hgross2, net2 for hnet2, and well 
spacing for d.  

 

4.2 Conflict Data Patterns in the Raw Data 
Using the TANE algorithm in the 

APPROXIMATE mood and error threshold of 
0.07, following approximate dependencies are 
identified, as shown in Table 2. Some other 
approximate dependencies can be discovered by 
using other error thresholds. The first 
dependency is the most important one because it 
shows that selected five parameters have 
consistent association relationship with the water 
intake per active layer except a few data tuples. 
To simplify and ensure the correct approximate 
dependency analysis, only the first dependency 
was analyzed for identifying conflict data 
patterns. 

By analyzing the first dependency, following 
conflict tuples were identified out, as listed in 
Table 3. Highlighted pairs have large pattern 
conflicts, and bolded highlighted patterns were 
removed from the data set to study the effect of 
conflict patterns on the prediction models. 

 
Index Approximate Dependencies # of Rows to 

Delete 
1 hgross1 hnet1 hgross2 hnet2 d’ → RI 25 
2 Hgross1 hnet1 hgross2 hnet2 RI → d’ 20 
3 Hgross1 hnet1 hgross2 d’ RI → hnet2 24 
4 Hgross1 hgross2  hnet1 d’ RI → hnet2 23 

Table 2: Approximate Dependencies Detected Using the 
TANE algorithm 

 
Index hgross1 Hnet1 hgross2 hnet2 d’ RI 

1 0.2 0 0.4 0 150 0 
2 0.2 0 0.4 0 150 2 
3 0.2 0 0.6 0.5 150 0 
4 0.2 0 0.6 0.5 150 3 
5 0.2 0 0.4 0.2 150 0 
6 0.2 0 0.4 0.2 150 5 
7 0.4 0.2 0.4 0 150 0 
8 0.4 0.2 0.4 0 150 1 
9 0.5 0 0.4 0 150 0 

10 0.5 0 0.4 0 150 2 
11 0.5 0.5 0.5 0.5 150 0 
12 0.5 0.5 0.5 0.5 150 1 
13 0.5 0 0.8 0 150 0 
14 0.5 0 0.8 0 150 2 
15 0.5 0.4 1.0 0.4 150 1 
16 0.5 0.4 1.0 0.4 150 6 
17 0.6 0.2 0.5 0.2 200 1 
18 0.6 0.2 0.5 0.2 200 6 
19 1.3 1.1 1.2 0.4 150 0 
20 1.3 1.1 1.2 0.4 150 3 

Table 3: Conflicting tuples identified by analyzing the first 
approximate dependency in Table 2. 
 

From the results, it is obvious that the data set 
contained conflict relationships and associations 
among parameters. Some of them contained 
serious problems. For example, for specific 
pattern of hgross1, hnet1, hgross2, hnet2 and d’, the 
relative injection per active layer bear large 
difference, as <0.2, 0, 0.4, 0.2, 150, 0> in fifth 
tuple and <0.2, 0, 0.4, 0.2, 150, 5> in the sixth 
tuple, and <0.5, 0.4, 1.0, 0.4, 150, 1> in the 

Input: training data 
          Validating data 

Data cleaning: TANE 

ANFIS 

Result process 

Subtractive clustering: 
Parameter optimization 
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fifteenth and <0.5, 0.4, 1.0, 0.4, 150, 6> in the 
sixteenth. With same parameters, differences of 
relative injection were up to 5%. With these 
conflict data in the training data, it is difficult to 
model correct pattern association among these 
parameters. 

 

4.3 Experimental Results 
This method was applied to predict the 

injection profiles in the South II and V Districts in 
the Daqing Oilfield. Averagely, the prediction 
accuracy was up to 82%. Generally, prediction 
accuracy is high for thick and high- injectivity 
strata, and thin and low-injectivity strata; 
prediction accuracy is low for thick but low-
injectivity and thin but high-injectivity strata. This 
is because that the assumption on the 
relationship of thickness of strata and their 
permeability is invalid in those cases.  

The results were applied in analyzing the 
residual oil distribution and designing the 
secondary re-perforation in the South II District in 
the Daqing Oilfield. Promising results were 
observed, with increased recoverable reserve of 
5,370,000 tons and increased recovery of 4.5%.  

In this section, detailed results are reported to 
demonstrate the effectiveness of the new 
approach, compared with the FFBP Neural 
Networks, and the benefit of data scrubbing in 
problem modeling using soft computing methods.  

  
Results using the Raw Data: The injection 

profile prediction was mainly implemented by the 
new approach and FFBP neural networks. FFBP 
neural networks are well known for their 
capability in modeling non-linear and complicated 
problems. The problem with neural network is 
that it is difficult to set up a proper neural 
network, including architecture and parameters, 
for a given problem. Fig. 4 shows results from 
different neural networks, either with different 
architecture or with different parameters. It is 
obvious that, with same training and testing data 
sets, different FFBP neural networks generate 
different validating results. The optimization is 
difficult. Table 4 shows the validating results of 
these neural networks. 
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Fig. 4. Validating results from different FFBP neural networks 
for sampled testing data. 

 
 
 
 
 
 

Threshold Modeling Methods 1(%) 2(%) 
5-5-1 goal=0.005 34.78 72.82 
5-5-1 goal=0.01 35.87 72.82 

5-5-1 goal=0.003 43.48 72.82 
5-3-1 goal=0.005 42.39 72.82 
5-8-1 goal=0.005 38.04 79.34 

New approach 43.48 76.34 
Table 4: Validating accuracies obtained from the new 
approach and different FFBP neural networks using the raw 
data 
  

Results in Table 4 reflect the complexity in 
optimizing neural network setups. However, it is 
fairly easier to obtain an optimized model using 
the new approach. For our method, although it 
may not obtain highest accuracy in all thresholds, 
it achieved higher accuracy in most cases.  

Table 5 shows the prediction accuracy using 
the FFBP and the new approach for the N2-D2-
B447 well. The N2-D2-B447 is an injection well in 
the South II District. From its injection profile 
data, it has thin strata having large injectivity, 
such as S24a and S25, and thick strata having 
small injectivity, such as S216 and P21a. These 
strata have poor prediction accuracy. Results 
show that, on same level of accuracy in validating 
process, new approach achieved higher 
accuracies under different precision 
requirements. Fig. 5 shows the predicted 
injection profiles of the well N2-D2-B447 using 
new approach and FFBP under configuration in 
the Table 4. 

 
θ 5-3-1 goal=0.005 New Approach 
1 27.8 41.7 
2 41.7 75.8 

Table 5. Injection profile prediction accuracy for the well N2-
D2-B447 using the new approach and the FFBP neural 
network using the raw data 
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Fig.5. Predicted injection profiles for the N2-D2-B447 using 
the raw data. 

 
Results with Cleaned Data: Results with 

cleaned data were obtained by re-running above 
experiments after removing bolded highlighted 
conflicting data patterns in Table 3. Table 6 
shows the validating accuracy from the new 
approach and different FFBP neural networks 
using cleaned data. Table 7 shows the prediction 
accuracies from the new approach and the FFBP 
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neural network configured as “5-3-1 goal=0.005.” 
These results show great improvements on 
accuracies under thresholds θ=1 and 2 for both 
the new approach and FFBP neural networks, 
and demonstrate the importance of consistent 
data used for problem modeling. 

 
Threshold Modeling Methods 

1(%) 2(%) 
5-5-1 goal=0.01 54.12 74.12 

5-5-1 goal=0.005 54.12 75.29 
5-5-1 goal=0.003 54.12 78.82 
5-3-1 goal=0.005 57.64 77.65 
5-8-1 goal=0.005 60 74.12 

New approach 50.24 83.33 
Table 6: Validating accuracies obtained from the new 
approach and different FFBP neural networks using the 
cleaned data 
 

θ 5-3-1 goal=0.005 New Approach 
1 30.56 54.44 
2 72.22 83.33 

Table 7: Prediction accuracy of the well N2-D2-B447 using 
the new approach and the FFBP neural network using the 
cleaned data 
 

5. CONCLUSIONS AND DISCUSSIONS 
Modeling complicated real-world problems is 

always full of challenge. In this paper, a new 
problem modeling approach is presented. The 
approach integrates two soft computing methods, 
the fuzzy subtractive clustering and the ANFIS, 
which enables it to construct a FIS automatically 
from training data set. A parameter optimization 
step is adapted to aid in generating optimized 
clustered data and hence the optimized FIS.  

In problem modeling using soft computing 
methods, quality of training data is the key for 
stable results. Raw data obtained from real 
practice or process is always messed with 
different problems. Conflicting data is dangerous, 
especially when sampled data sets are small in 
size. It is shown by the prediction accuracy 
improvement in the practical problem.  

The problem modeling strategy is justified by 
being applied in a critical problem in oilfield 
development ─ the injection profile prediction. 
Based on targeting problem, the detailed 
modeling procedure and methods could be 
different.  

Compared with neural networks, this approach 
provides more promising results for intractable 
and complicated real-world problems. The new 
approach can also be applied to resolve internet 
related problem modeling, which are the hot topic 
of this decade.  
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